Statement of Verification

BREG EN EPD No.: 000140

Issue 08

This is to verify that the

Environmental Product Declaration provided by:

SN Maia – Siderurgia Nacional S.A. (member of UK CARES)

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and

BRE Global Scheme Document SD207

This declaration is for: <u>Carbon Steel Reinforcing Bar (secondary production route – scrap)</u>

Company Address

SN Maia – Siderurgia Nacional S.A. Fabrica da Maia 4425 S. Pedro de Fins Portugal

BRE/Global

EPD

TIE

 Figure 1
 Emma Baker
 09 June 2023

 Signed for BRE Global Ltd
 Operator
 Date of this Issue

 20 October 2019
 08 May 2026

 Date of First Issue
 Expiry Date

 ECO PLATFORM

visit <u>www.greenbooklive.com/terms</u>. To check the validity of this statement of verification please, visit <u>www.greenbooklive.com/check</u> or contact us. BRE Global Ltd., Garston, Watford WD25 9XX. T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: <u>Enquiries@breglobal.com</u> ECO PLATFORM

BF1805-C-ECOP Rev 0.3

Page 1 of 19

© BRE Global Ltd, 2022

Environmental Product Declaration

EPD Number: 000140

General Information

EPD Programme Operator	Applicable Product Category Rules
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804+A2 PN 514 Rev 3.0
Commissioner of LCA study	LCA consultant/Tool
UK CARES Pembroke House 21 Pembroke Road Sevenoaks Kent, TN13 1XR UK	UK CARES EPD Tool SPHERA SOLUTIONS UK LIMITED The Innovation Centre Warwick Technology Park, Gallows Hill, Warwick, Warwickshire, CV34 6UW www.sphera.com
Declared/Functional Unit	Applicability/Coverage
1 tonne of carbon steel reinforcing bars manufactured by the secondary (scrap-based) production route as used within concrete structures for a commercial building.	Manufacturer-specific product.
ЕРД Туре	Background database
Cradle to Gate with options	GaBi
Demonstra	tion of Verification
CEN standard EN 15	5804 serves as the core PCR ^a
Independent verification of the declara	ation and data according to EN ISO 14025:2010
	riate ^b)Third party verifier: Pat Hermon
a: Product category rules	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)
Co	mparability
EN 15804:2012+A2:2019. Comparability is further dependent	programmes may not be comparable if not compliant with endent on the specific product category rules, system boundaries ause 5.3 of EN 15804:2012+A2:2019 for further guidance

Information modules covered

	Produc	•	Const	ruction				Use sta	ige				End	of-life		Benefits and loads beyond
	Flouuc		Const	ruction	Rel	ated to	the bui	ilding fa	bric		ted to uilding		End-	or-me		the system boundary
A1	A2	A3	A4	A5	B1	B2	B 3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
\square	V	\checkmark	V	V	$\mathbf{\nabla}$	V	$\mathbf{\nabla}$	V	V	\square	V	$\mathbf{\nabla}$	$\mathbf{\nabla}$	V	V	$\mathbf{\overline{\mathbf{A}}}$

Note: Ticks indicate the Information Modules declared.

Manufacturing site

SN Maia - Siderurgia Nacional, S.A. (member of UK CARES)

Fabrica da Maia 4425 S. Pedro de Fins Portugal

Construction Product:

Product Description

Reinforcing steel bar (according to product standards listed in Sources of Additional Information) that is obtained from scrap, melted in an Electric Arc Furnace (EAF) followed by hot rolling.

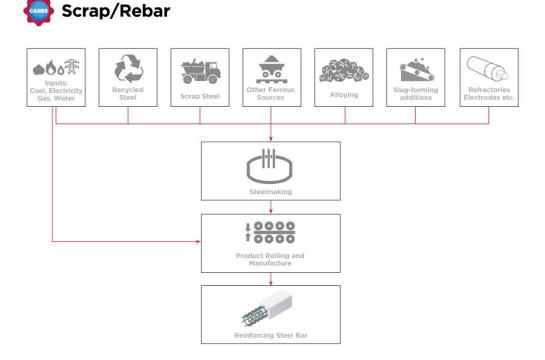
The declared unit is 1 tonne of carbon steel reinforcing bars as used within concrete structures for a commercial building.

Technical Information

Property	Value, Unit
Production route	EAF
Density	7850 kg/m ³
Modulus of elasticity	200000 N/mm ²
Weldability (Ceq)	max 0.50 %
Yield strength (as per BS 4449:2005+A3:2016)	min 500 N/mm ² – max 650 N/mm ²
Tensile strength (as per BS 4449:2005+A3:2016)	min 540 N/mm² (Tensile strength/Yield Strength ≥ 1.08)
Agt (% total elongation at maximum force as per BS 4449:2005+A3:2016)	min 5 %
Surface geometry (Relative rib area, f _R as per BS 4449:2005+A3:2016)	min 0.040 for Bar Size >6mm & ≤12mm & min 0.056 for Bar size>12
Re-bend test (as per BS 4449:2005+A3:2016)	Pass
Fatigue test (as per BS 4449:2005+A3:2016)	Pass
Recycled content (as per ISO 14021:2016/Amd:2021)	98.8 %

Main Product Contents

Material/Chemical Input	%
Fe	97
C, Mn, Si, V, Ni, Cu, Cr, Mo and others	3


Manufacturing Process

Scrap metal is melted in an electric arc furnace to obtain liquid steel. This is then refined to remove impurities and alloying additions can be added to give the required properties.

Hot metal (molten steel) from the EAF is then cast into steel billets before being sent to the rolling mill where they are rolled and shaped to the required dimensions for the finished bars and coils of reinforcing steel.

The products are packed with steel wire or straps to bind the products, either of the steel ties and products do not include any biogenic materials.

Process flow diagram

Construction Installation

Processing and proper use of reinforcing steel products depends on the application and should be made in accordance with generally accepted practices, standards and manufacturing recommendations.

During transport and storage of reinforcing steel steel products the usual requirement for securing loads is to be observed.

Use Information

The composition of the reinforcing steel products does not change during use.

Reinforcing steel products do not cause adverse health effects under normal conditions of use.

No risks to the environment and living organisms are known to result from the mechanical destruction of the reinforcing steel product itself.

End of Life

Reinforcing steel products are not reused at end of life but can be recycled to the same (or higher/lower) quality of steel depending upon the metallurgy and processing of the recycling route.

It is a high value resource, so efforts are made to recycle steel scrap rather than disposing of it at EoL. A recycling rate of 92% is typical for reinforcing reinforcing steel products

Life Cycle Assessment Calculation Rules

Declared unit description

The declared unit is 1 tonne of carbon steel reinforcing bars manufactured by the secondary (scrap-based) production route as used within concrete structures for a commercial building (i.e. 1 tonne in use, accounting for losses during fabrication and installation, not 1 tonne as produced).

System boundary

The system boundary of the EPD follows the modular design defined by EN 15804+A2. This is a cradle to gate – with all options EPD and thus covers all modules from A1 to C4 and includes module D as well.

Impacts and aspects related to losses/wastage (i.e. production, transport and waste processing and end-of-life stage of lost waste products and materials) are considered in the modules in which the losses/wastage occur.

Once steel scrap has been collected for recycling it is considered to have reached the end of waste state.

Data sources, quality and allocation

Data Sources: Manufacturing data of the period 01/01/2021-31/12/2021 has been provided by SN Maia - Siderurgia Nacional, S.A. (member of UK CARES).

The selection of the background data for electricity generation is in line with the BRE Global PCR. Country or region specific power grid mixes are selected from GaBi 2021 databases (Sphera 2021); thus, residual grid mix of Portugal has been selected to suit specific manufacturing location.

Data Quality: Data quality can be described as good. Background data are consistently sourced from the GaBi 2021 databases (Sphera 2021). The primary data collection was thorough, considering all relevant flows and these data have been verified by UK CARES.

Data quality level and criteria of the UN Environment Global Guidance on LCA database development:

Geographical Representativeness	: Good
Technical Representativeness	: Very good
Time Representativeness	: Good

Allocation: EAF slag and mill scale are produced as co-products from the steel manufacturing process. Impacts are allocated between the steel, the slag and the mill scale based on economic value. The revenue generated from both mill scale and EAF slag are 0.03% and 0.19% respectively, and their total is less than 1% in relation to the product based on current market prices, these co-products are of definite value and are freely/readily traded in reality. For this reason, economic allocation has been applied to the processes where these co-products arise.

Production losses of steel during the production process are recycled in a closed loop offsetting the requirement for external scrap. Specific information on allocation within the background data is given in the GaBi datasets documentation (/GaBi 6 2021/)

Cut-off criteria

On the input side all flows entering the system and comprising more than 1% in total mass or contributing more than 1% to primary energy consumption are considered. All inputs used as well as all process-specific waste and process emissions were assessed. For this reason, material streams which were below 1% (by mass) were captured as well. In this manner the cut-off criteria according to the BRE guidelines are fulfilled.

The mass of steel wire or strand used for binding the product is less than 1 % of the total mass of the product.

hre

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated) Parameters describing environmental impacts GWP-GWP-GWP-GWP-ODP AP EPtotal fossil biogenic luluc freshwate kg CO₂ kg CFC11 kg (PO₄)³⁻ kg CO₂ kg CO₂ kg CO₂ mol H⁺ eq eq eq eq eq eq eq 2.29E-13 144 144 -0.419 0.033 0.602 1.01E-04 Raw material supply A1 7.65E-03 Transport A2 14 13.9 0.033 6.77E-15 0.383 1.47E-05 Product stage Manufacturing A3 258 258 0.192 0.131 3.46E-12 0.422 5.65E-04 Total (of product stage) 3.70E-12 A1-3 4.16E+02 4.16E+02 -0.219 0.196 1.41 6.81E-04 A4 16.8 -0.021 0.137 2.14E-15 4.97E-05 Transport 16.7 0.049 Construction process stage Construction A5 48.6 48.6 -0.022 0 4.91E-13 0.164 9.78E-05 Use B1 0 0 0 0 0 0 0 Maintenance B2 0 0 0 0 0 0 0 Repair В3 0 0 0 0 0 0 0 Use stage Replacement Β4 0 0 0 0 0 0 0 0 B5 0 0 0 0 0 0 Refurbishment Operational energy use 0 0 0 0 0 0 0 B6 Operational water use B7 0 0 0 0 0 0 0 %92 Recycling / %8 Landfill Scenario Deconstruction, C1 2.15 2.15 0.003 4.93E-05 2.48E-16 0.003 4.10E-07 demolition 40.6 -0.046 0.312 5.10E-15 1.14E-04 Transport C2 40.3 0.178 End of life Waste processing C3 0 0 0 0 0 0 0 Disposal C4 1.18 1.21 -0.035 0.004 4.70E-15 0.009 2.03E-06 Potential benefits Reuse, recovery, D 440 -0.769 0.010 -2.06E-12 7.62E-05 and loads beyond the 441 1.22 recycling potential system boundaries 100% Lanfill Scenario Deconstruction, C1 0.003 4.93E-05 2.48E-16 4.10E-07 2.15 2.15 0.003 demolition C2 -0.002 0.015 2.38E-16 1.88 1.86 0.007 5.53E-06 Transport End of life C3 Waste processing 0 0 0 0 0 0 0 Disposal C4 14.7 15.1 -0.439 0.044 5.87E-14 0.108 2.54E-05 Potential benefits Reuse, recovery, and loads beyond the D 2.45E+03 2.45E+03 -4.28 0.058 -1.15E-11 6.78 4.24E-04 recycling potential system boundaries 100% Recycling Scenario Deconstruction, C1 2.15 2.15 0.003 4.93E-05 2.48E-16 0.003 4.10E-07 demolition 43.9 43.6 -0.049 0.338 5.53E-15 0.192 1.23E-04 Transport C2 End of life Waste processing C3 0 0 0 0 0 0 0 C4 0 0 0 0 0 0 0 Disposal Potential benefits Reuse, recovery, 265 4.60E-05 and loads beyond the D 266 -0 464 0.006 -1 24F-12 0 735 recycling potential system boundaries

GWP-total = Global warming potential, total;

GWP-fossil = Global warming potential, fossil;

GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change; ODP = Depletion potential of the stratospheric ozone layer;

AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

Date of Issue:09 June 2023 Page 7 of 19

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

			EP- marine	EP- terrestrial	POCP	ADP- mineral &metals	ADP- fossil	WDP	PM
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq	disease incidenc e
	Raw material supply	A1	0.100	0.995	0.272	5.16E-05	1.13E+03	15.2	5.91E-06
	Transport	A2	0.100	1.10	0.276	6.80E-07	174	0.322	6.26E-06
Product stage	Manufacturing	A3	0.138	1.45	0.474	6.04E-05	3.54E+03	181	3.74E-0
	Total (of product stage)	A1-3	0.338	3.55	1.022	1.13E-04	4.84E+03	1.97E+0 2	1.59E-0
Construction	Transport	A4	0.022	0.248	0.044	1.27E-06	223	0.145	2.72E-0
process stage	Construction	A5	0.045	0.486	0.128	1.34E-05	603	25.1	1.73E-0
	Use	B1	0	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0	0
	Repair	B3	0	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0	0
%92 Recycling / %8	3 Landfill Scenario								
	Deconstruction, demolition	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-0
End of life	Transport	C2	0.085	0.940	0.179	2.97E-06	536	0.334	1.39E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0.002	0.025	0.007	1.14E-07	16.0	0.130	1.07E-0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.253	2.74	0.846	-9.43E-06	3.22E+03	-9.06	1.59E-0
100% Lanfill Scena	rio								
	Deconstruction, demolition	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-0
End of life	Transport	C2	0.003	0.035	0.006	1.42E-07	24.8	0.016	3.43E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0.028	0.307	0.085	1.43E-06	201	1.62	1.34E-0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	1.41	15.2	4.70	-5.25E-05	1.79E+04	-50.4	8.85E-0
100% Recycling Sc	enario								
	Deconstruction, demolition	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-0
End of life	Transport	C2	0.092	1.02	0.194	3.22E-06	581	0.362	1.50E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.153	1.65	0.51	-5.69E-06	1.94E+03	-5.47	9.60E-0

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, accumulated exceedance;

POCP = Formation potential of tropospheric ozone; ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

Date of Issue:09 June 2023 Page 8 of 19

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

			IRP	ETP-fw	HTP-c	HTP-nc	SQP
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless
	Raw material supply	A1	1.50	1.01E-04	1.39E-08	9.19E-07	379
	Transport	A2	0.030	1.47E-05	2.49E-09	1.21E-07	24.6
Product stage	Manufacturing	A3	1.76	5.65E-04	9.72E-08	2.00E-06	4.08E+03
	Total (of product stage)	A1-3	3.29	6.81E-04	1.14E-07	3.04E-06	4.48E+03
Construction	Transport	A4	0.039	4.97E-05	3.25E-09	1.89E-07	76.5
process stage	Construction	A5	0.435	9.78E-05	9.33E-09	4.04E-07	594
	Use	B1	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0
	Repair	B3	0	0	0	0	0
Jse stage	Replacement	B4	0	0	0	0	0
Ū	Refurbishment	B5	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0
%92 Recycling / %	8 Landfill Scenario						
	Deconstruction, demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.092	1.14E-04	7.79E-09	4.56E-07	174
	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0.018	2.03E-06	1.35E-09	1.49E-07	3.24
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-5.04	7.62E-05	7.00E-07	2.39E-06	-263
100% Lanfill Scena	rio						
	Deconstruction, demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.004	5.53E-06	3.61E-10	2.14E-08	8.51
	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0.221	2.54E-05	1.69E-08	1.86E-06	40.5
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-28.1	4.24E-04	3.89E-06	1.33E-05	-1.46E+03
100% Recycling So	enario						
	Deconstruction, demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.100	1.23E-04	8.44E-09	4.94E-07	189
	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-3.04	4.60E-05	4.22E-07	1.44E-06	-159

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans;

HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

Date of Issue:09 June 2023 Page 9 of 19

LCA Results (continued)

			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	86.3	0	86.3	1.13E+03	0	1.13E+03
	Transport	A2	7.98	0	7.98	174	0	174
Product stage	Manufacturing	A3	3.05E+03	0	3.05E+03	3.54E+03	0	3.54E+03
	Total (of product stage)	A1-3	3.14E+03	0	3.14E+03	4.84E+03	0	4.84E+03
Construction	Transport	A4	12.4	0	12.4	223	0	223
process stage	Construction	A5	412	0	412	603	0	603
	Use	B1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	B3	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0
	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0
%92 Recycling / 9	%8 Landfill Scenario							
	Deconstruction, demolition	C1	0.098	0	0.098	28.3	0	28.3
End of life	Transport	C2	28.4	0	28.4	537	0	537
End of life	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	2.16	0	2.16	16.1	0	16.1
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-410	0	-410	3.25E+03	0	3.25E+03
100% Landfill Sce	enario							
	Deconstruction, demolition	C1	0.098	0	0.098	28.3	0	28.3
End of life	Transport	C2	1.38	0	1.38	24.8	0	24.8
Lind of life	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	27.0	0	27.0	201	0	201
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-2.28E+03	0	-2.28E+03	1.81E+04	0	1.81E+04
100% Recycling	Scenario							
	Deconstruction, demolition	C1	0.098	0	0.098	28.3	0	28.3
End of life	Transport	C2	30.7	0	30.7	582	0	582
2.13 01 110	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-247	0	-247	1.96E+03	0	1.96E+03

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw

materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

LCA Results (continued)

			SM	RSF	NRSF	FW
			kg	MJ net calorific value	MJ net calorific value	m ³
	Raw material supply	A1	0	0	0	15.2
Product stage	Transport	A2	0	0	0	0.322
Flouder stage	Manufacturing	A3	-1.14E+03	0	0	181
	Total (of product stage)	A1-3	-1.14E+03	0	0	1.97E+02
Construction	Transport	A4	0	0	0	0.145
process stage	Construction	A5	0	0	0	25.1
	Use	B1	0	0	0	0
	Maintenance	B2	0	0	0	0
	Repair	B3	0	0	0	0
Use stage	Replacement	B4	0	0	0	0
	Refurbishment	B5	0	0	0	0
	Operational energy use	B6	0	0	0	0
	Operational water use	B7	0	0	0	0
%92 Recycling / %8	Landfill Scenario					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.334
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0.130
Potential benefits and oads beyond the system boundaries	Reuse, recovery, recycling potential	D	223	0	0	-9.06
100% Landfill Scena	rio					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.016
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	1.62
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	1.14E+03	0	0	-50.4
100% Recycling Sce	nario					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.362
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0
Potential benefits and oads beyond the system boundaries	Reuse, recovery, recycling potential	D	143	0	0	-5.47

SM = Use of secondary material;

NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

RSF = Use of renewable secondary fuels;

LCA Results (continued)

			HWD	NHWD	RWD
			kg	kg	kg
	Raw material supply	A1	5.16E-08	1.35	0.016
-	Transport	A2	6.07E-09	0.021	2.33E-04
Product stage	Manufacturing	A3	1.79E-06	44.3	0.026
	Total (of product stage)	A1-3	1.85E-06	45.7	0.042
Construction	Transport	A4	1.12E-08	0.033	2.70E-04
process stage	Construction	A5	2.40E-07	14.3	0.005
	Use	B1	0	0	0
	Maintenance	B2	0	0	0
	Repair	B3	0	0	0
Use stage	Replacement	B4	0	0	0
	Refurbishment	B5	0	0	0
	Operational energy use	B6	0	0	0
	Operational water use	B7	0	0	0
%92 Recycling / %8	Landfill Scenario				
	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05
End of life	Transport	C2	2.58E-08	0.078	6.46E-04
	Waste processing	C3	0	0	0
	Disposal	C4	1.70E-09	80.1	1.68E-04
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-3.94E-07	6.38	-0.053
100% Landfill Scena	rio				
	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05
End of life	Transport	C2	1.25E-09	0.004	3.00E-05
	Waste processing	C3	0	0	0
	Disposal	C4	2.13E-08	1.00E+03	0.002
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.19E-06	35.5	-0.294
100% Recycling Sce	nario				
	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05
End of life	Transport	C2	2.79E-08	0.085	6.99E-04
	Waste processing	C3	0	0	0
	Disposal	C4	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.38E-07	3.85	-0.032

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

LCA Results (continued)

			CRU	MFR	MER	EE	Biogenic carbon	Biogenic carbon
			0.10				(product)	(packaging)
			kg	kg	kg	MJ per energy carrier	kg C	kg C
	Raw material supply	A1	0	0	0	0	0	0
Draduat atoga	Transport	A2	0	0	0	0	0	0
Product stage	Manufacturing	A3	0	0	0	0	0	0
	Total (of product stage)	A1-3	0	0	0	0	0	0
Construction	Transport	A4	0	0	0	0	0	0
process stage	Construction	A5	0	-18.8	0	0	0	0
	Use	B1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	B3	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0
-	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	B6	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0
%92 Recycling / %8	Landfill Scenario							
	Deconstruction, demolition	C1	0	-920	0	0	0	0
End of life	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Landfill Scena	rio							
	Deconstruction, demolition	C1	0	0	0	0	0	0
End of life	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Recycling Sce	nario							
	Deconstruction, demolition	C1	0	-1.00E+03	0	0	0	0
End of life	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

CRU = Components for reuse;

MFR = Materials for recycling

MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenario	Parameter	Units	Results
	On leaving the steelworks the reinforcing steel products are transported to they are converted into constructional steel forms suitable for the installati transported on to the construction site, including provision of all materials transport distance for rolled steel to fabricators and road transport distance construction forms to site are assumed to be 100 km and 250 km, respect Only the one-way distance is considered as it is assumed that the logistics optimise their distribution and not return empty in modules beyond A3.	on site, the and produc e for steel ively.	n :ts. Road
A4 – Transport to the building site	Truck trailer - Fuel	litre/km	1.56
	Distance	km	350
	Capacity utilisation (incl. empty returns)	%	85
	Bulk density of transported products	kg/m ³	7850
A5 – Installation in the building	primarily cutting and welding. As such, other inputs to the process include energy, and cutting gases. Other outputs of this process are steel scrap a (where applicable). Fabrication into structural steel products and installation in the building; in all materials, products, and energy, as well as waste processing up to the disposal of final residues during the construction stage. Installation of the	nd wastewa cluding prov end-of-was	ater vision of ste state o
	into the building is assumed to result in 10% wastage (determined based losses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assume requires 15.34 kWh/tonne finished product, and that there is a 2% wastag process.	on typical ir ed that fabri	stallation
	losses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assume requires 15.34 kWh/tonne finished product, and that there is a 2% wastag	on typical ir ed that fabri	stallation
	losses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assume requires 15.34 kWh/tonne finished product, and that there is a 2% wastag process. Ancillary materials for installation - Waste material from fabrication,	on typical in ed that fabri e associate	nstallation ication ed with thi
	losses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assume requires 15.34 kWh/tonne finished product, and that there is a 2% wastag process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel	on typical ir ed that fabri e associate	istallation ication d with thi 2
B2 – Maintenance	losses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assume requires 15.34 kWh/tonne finished product, and that there is a 2% wastag process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel forms	on typical ir ed that fabri e associate % kWh	estallation ication ed with thi 2 15.34
	losses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assume requires 15.34 kWh/tonne finished product, and that there is a 2% wastag process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel forms Waste materials from installation wastage	on typical ir ed that fabri e associate % kWh	nstallation ication ed with thi 2 15.34
B3 – Repair	Iosses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assume requires 15.34 kWh/tonne finished product, and that there is a 2% wastag process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel forms Waste materials from installation wastage No maintenance required	on typical ir ed that fabri e associate % kWh	nstallation ication ed with thi 2 15.34
B3 – Repair B4 – Replacement	Iosses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assume requires 15.34 kWh/tonne finished product, and that there is a 2% wastag process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel forms Waste materials from installation wastage No maintenance required No repair process required	on typical ir ed that fabri e associate % kWh	nstallation ication ed with thi 2 15.34
B2 – Maintenance B3 – Repair B4 – Replacement B5 – Refurbishment Reference service life	Iosses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assume requires 15.34 kWh/tonne finished product, and that there is a 2% wastag process. Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms Energy Use - Energy per tonne required to fabricate construction steel forms Waste materials from installation wastage No maintenance required No repair process required No replacement considerations required	eference se initions pro tures" as ha	ervice life vided in aving a

C1 to C4 End of life,	The end-of-life stage starts when the construction product is replaced, dismantled or deconstructed from the building or construction works and does not provide any further function. The recovered steel is transported for recycling while a small portion is assumed to be unrecoverable and remains in the rubble which is sent to landfill. 92% of the reinforcing steel is assumed to be recycled and 8% is sent to landfill [STEELCONSTRUCTION.INFO 2012]. Once steel scrap is generated through the deconstruction activities on the demolition site it is considered to have reached the "end of waste" state. No further processing is required so there are no impacts associated with this module. Hence no impacts are reported in module C3.		
	Waste for recycling - Recovered steel from crushed concrete	%	92
	Waste for energy recovery - Energy recovery is not considered for this study as most end of life steel scrap is recycled, while the remainder is landfilled	-	-
	Waste for final disposal - Unrecoverable steel lost in crushed concrete and sent to landfill	%	8
	Portion of energy assigned to rebar from energy required to demolish building, per tonne	MJ	24
	Transport to waste processing by Truck - Fuel consumption	litre/km	1.56
	Transport to waste processing by Truck – Distance	km	463
	Transport to waste processing by Truck – Capacity utilisation	%	85
	Transport to waste processing by Truck – Density of Product	kg/m ³	7850
	Transport to waste processing by Container ship - Fuel consumption	litre/km	0.0041
	Transport to waste processing by Container ship - Distance	km	158
	Transport to waste processing by Container ship – Capacity utilisation	%	50
	Transport to waste processing by Container ship – Density of Product	kg/m ³	7850
Module D	This study is concerned with the secondary production route and more scrap input to the system than is recovered at end of life. The net effect of this is th mainly models the burdens associated with the scrap input (secondary mater steelmaking process.		
	The resulting scrap credit/burden is calculated based on the global "value (/worldsteel 2011).		
	Recycled Content	kg	988
	Re-used Content	kg	0
	Recovered for recycling	kg	920
	Recovered for re-use	kg	0
	Recovered for energy	kg	0

Summary, comments and additional information

Interpretation

Scrap based reinforcing steel product of SN Maia - Siderurgia Nacional, S.A. (member of UK CARES) is made via the EAF route. The bulk of the environmental impacts and primary energy demand is attributed to the manufacturing phase, covered by information modules A1-A3 of EN 15804+A2.

The interpretation of the results has been carried out considering the methodology- and data-related assumptions and limitations declared in the EPD. This interpretation section focuses on the environmental impact categories as well as the primary energy demand indicators only.

Global Warming Potential (GWP)

The majority of the life cycle GWP impact occurs in the production phase (A1-A3). A1-A3 impacts account for 78.79% overall life cycle impacts for this category. The most significant contributions to production phase impacts are: the upstream production of raw materials used in the steelmaking process, generation/supply of electricity and the production/use of fuels on site. Fabrication, installation and the end-of-life processes covered in C1-C4 make a minimal contribution to GWP. For overall climate change impacts, carbon dioxide emissions account for the majority of impacts with methane being the second most significant contributor.

Ozone Depletion Potential (ODP)

The majority of impacts are associated with the production phase (A1-3). Significant contributions to production phase impact come from the emission of ozone depleting substances during the upstream production of raw materials/preproducts as well as those arising from electricity production. Module D shows a very small credit even though scrap burdens are being assessed in this phase. This is explained because ODP emissions are linked to grid electricity production used.

Acidification Potential (AP)

Acidification potential is generally driven by the production of sulphur dioxide and nitrogen oxides through the combustion of fossil fuels, particularly coal and crude oil products. The majority of the lifecycle AP impact occurs in the production phase (A1-A3), similar to GWP. The major contributors to production phase AP impacts comes from energy resources used in the production of the raw materials and pre-products for the steelmaking process and from transportation. Fabrication, installation and the end-of-life processes classed under C1-C4 make minimal contributions.

Eutrophication Potential (EP)

Eutrophication is driven by nitrogen and phosphorus containing emissions and as with GWP and AP is often strongly linked with the use of fossil fuels. The major eutrophication impacts occur in the production phase (A1-A3). Significant contributions to production phase impact comes from the production of raw materials and transport. Fabrication, installation and the end-of-life processes classed under C1-C4 again make minimal contributions.

Photochemical Ozone Creation Potential (POCP)

POCP tends to be driven by emissions of carbon monoxide, nitrogen oxides (NOx), sulphur dioxide and NMVOCs. The production phase is the dominant phase of the lifecycle with regards to POCP impacts. Again, these are all emissions commonly associated with the combustion of fuels. Significant contributors to POCP are the upstream production of raw materials/pre-products and transport, directly linked to fossil fuel combustion. It should be noted that the impacts for steel recycling in module D is almost of the same magnitude as the production phase impacts.

Date of Issue:09 June 2023 Page 16 of 19

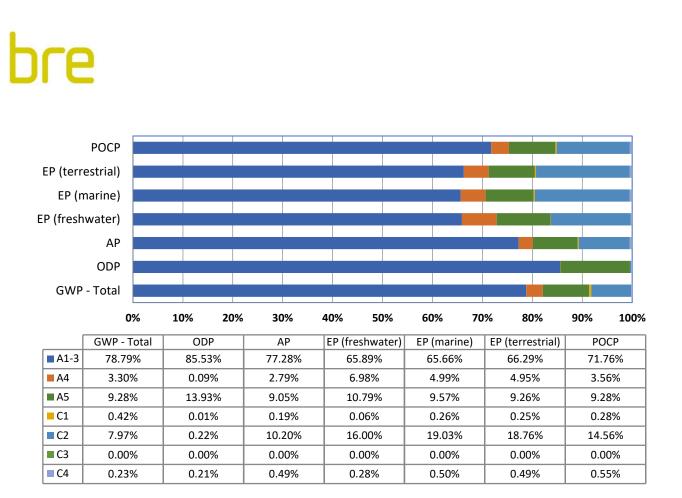


Figure 1 - shows the relative contribution of each life cycle stage to different environmental indicators for the carbon steel reinforcing bars manufactured by the Direct Reduced Iron production route

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO BS EN ISO 14040:2006+A1:2020. London, BSI, 2020.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006+A2:2020. London, BSI, 2020.

Demolition Energy Analysis of Office Building Structural Systems, Athena Sustainable Materials Institute, 1997

Sphera Solutions GmbH; GaBi Software System and Database for Life Cycle Engineering, Sphera Solution GmbH, Leinfelden-Echterdingen, 2021.

GaBi 10, Content Version 2021.2: Documentation of GaBi 10, Content Version 2021.2: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 2021. (http://documentation.gabi-software.com/)

International Energy Agency, Energy Statistics 2013. http://www.iea.org

Kreißig, J. und J. Kümmel (1999): Baustoff-Ökobilanzen. Wirkungsabschätzung und Auswertung in der Steine-Erden-Industrie. Hrsg. Bundesverband Baustoffe Steine + Erden e.V.

U,S, Geological Survey, Mineral Commodity Summaries, Iron and Steel Slag, January 2014

EPD Number: 000140	Date of Issue:09 June 2023	Expiry Date 08 May 2026
BF1805-C-ECOP Rev 0.2	Page 17 of 19	© BRE Global Ltd, 2022

SteelConstruction.info; The recycling and reuse survey, 2012 http://www.steelconstruction.info/The_recycling_and_reuse_survey

Sustainability of construction works - Environmental product declarations - Methodology for selection and use of generic data; German version CEN/TR 15941

REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

CARES SCS Sustainable Constructional Steel Scheme v9 – Operational assessment schedule - <u>https://www.carescertification.com/certified-companies/search</u> - Certificate number of conformance to SCS v9 at the time of LCA study – 1328.

CARES SRC Steel for the Reinforcement of Concrete Scheme. Appendix 1 – Quality and operations assessment schedule for carbon steel bars for the reinforcement of concrete including inspection and testing requirements - <u>https://www.carescertification.com/certified-companies/search</u> - Certificate number of conformance to BS4449 at the time of LCA study – 000902

BS 4449:2005+A3:2016 Steel for the reinforcement of concrete. Weldable reinforcing steel. Bar, coil and decoiled product. Specification.

ASTM A615/A615M – 22 Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.

ASTM A706/A706M – 22 - Standard Specification for Deformed and Plain Low-Alloy Steel Bars for Concrete Reinforcement.

ISO 6935-2:2019 - Steel for the reinforcement of concrete - Part 2: Ribbed bars.

EN 10080:2005 Steel for the reinforcement of concrete. Weldable reinforcing steel. General

DIN 488-2:2009 - Reinforcing steels - Reinforcing steel bars.

NF A35-080-1:2020 - Aciers pour béton armé - Aciers soudables - Partie 1 : barres et couronnes.

UNE 36068:2011 - Ribbed bars of weldable steel for the reinforcement of concrete.

UNE 36065:2011- Ribbed bars of weldable steel with special characteristics of ductility for the reinforcement of concrete.

LNEC E449:2017 - A500 NR Steel bars for reinforced concrete

LNEC E450:2017- A500 NR Steel bars for reinforced concrete

LNEC E455:2017 - Special ductility A400 NR steel bars for reinforced concrete

LNEC E460:2017- Special ductility A500 NR Steel bars for reinforced concrete

CAN/CSA G30.18-09:2012 Carbon steel bars for concrete reinforcement.

AS NZS 4671:2019 Steel for the reinforcement of concrete

NBN A 24-302:1986 Siderurgique produts. Reinforcing steels

EN 10080_2005 Stell for the reinforcement of Concrete

EN 1992-1-1 2004 Eurocode 2 part 3.2 and Appendix C

NEN 6008:2008+A1:2020 nl Steel for reinforcement of concrete

SFS 1300:2020 - Reinforcing Steel. Minimum requirements for weldable reinforcing steel and welded fabrics

NS 3576-2:2012 - Steel for the reinforcement of concrete - Dimensions and properties - Part 2: Ribbed steel B500NB.

NS 3576-3:2012 - Steel for the reinforcement of concrete — Dimensions and properties — Part 3: Ribbed steel B500NC

SS 215040:2014 - Product specification for SS-EN 10080:2005 - Steel for the reinforcement of concrete - Weldable reinforcing steel -Technical delivery conditions for bars, coils, welded fabric and lattice girders

EHE-08 approved by RD 1247/2008 - Legal Instruction of Concrete structures

DEGREE 125/2016 - Essential Technical requirements for weldable reinforcing steels and reinforcing steel nets.

BRL 0501:2010 Reinforcing steel. Steel for the reinforcement of concrete

SI 4466-3:2013 - Steel for the reinforcement of concrete: Ribbed Bars.

NM 01.4.097:2013 - Produits sidérurgiques - Armatures pour béton armé - Barres et couronnes à haute adhérence soudables